Battleship Playing Program Utilizing
Probability Density Functions

Authors: Jacob Boyd, Department of Physics, Kent State University, Kent, OH 44242
Jonathan Boyd, Department of Physics, Kent State University, Kent, OH 44242

ChooseQhl10First

KENT STATE

Mentor: Dr. Darwin L. Boyd, College of Applied Engineering, Sustainability, and Technology, Kent State University, Kent, OH 44242

Introduction

Battleship is a classic Navy strategy guessing game in which players

/" calculation of
«— Probability Density |
| Start '

Begin With Ship Size
Z

Method

— The program calculates discrete values for the probability of a ship be-
guess at the location of an opponent’s ships. As the game progresses < Go to Next Ship Size < ing located at a given cell. These are not true probability density func-
the possibility of a ship to be in any location changes and the probabil- tions which evaluate the integral of a function. The calculated values
ity that a ship occupies any cell can be calculated based on the current < GotoNextCell < used in the program would be better classified as a probability density
state of the board. By evaluating the probability, an optimal move can Lm:mn matrix as they are discrete values.
be made such that it selects the most likely position of any ship thus re- !
ducing the number of turns required to win. - In Hunt Mode the probability value given to a certain cell is deter-

I No No mined by the number of ways a single ship can be oriented to fit on a
Research Problem D Eiiioinal Y | sicerscecamiza. Yos __#fcers Catcunita that cell. The values for each remaining ship size are then summed to

To create a program capable of playing Battleship against another play-
er utilizing probability density functions to optimize performance.

Calculate Probability

Density For Cell

for Ship Size? for All Ship Sizes?

l Yes

.'f Calculation of H'.

| Probability Density |

End y
h‘“».__ ___J,-’

Figure 2: Flow Chart explaining the logic of the

probability calculations

produce a final value. Destroy Mode is activated
Hunt Mode. In Destroy Mode the probability va

cell is determined by the number of ways a sing

when a ship is hit in
ue given to a certain
e ship can be oriented

to fit on that cell and the hit simultaneously. Again, the values for each
remaining ship size are summed to produce a final value.

The program was written in C++ utilizing an object oriented design ap-
proach. The state of the board was stored in a 2-dimentional array of a

> Density Hunt Mode « . il :
A B C D E F e H 1 A B D EF 6 H I programmer defined class. The probability variable of each cell was
J' W 2 . 4 4 4 4 4 BB 1 ey calculated based on the state of the board and the cell with the high-
R O . . . - - - S o, . o7 o7 e B est value was selected to attack. If two cells held the same value one
Calcuiated s 4 IR . 3 19 24 28 30 31 31 30 28 24 19 was selected at random. If a ship was hit, the destroy mode was initiat-
l 4 4 5 6 6 6 6 6 6 5 4 4 21 26 30 32 33 33 32 30 26 21 ed in which the ship that was hit was searched for in adjacent cells
B 5 4 5 6 6 6 6 6 6 5 4 5 22 27 31 33 34 34 33 31 27 22 based on a different probability value given. Once a ship was sunk, the
Yes [End “‘ 6 4 5 6 6 6 6 6 6 5 4 6 22 27 31 33 34 34 33 31 27 22 ship resumed a hunting mode with the probability value of sunken
All Ships Sunk? ————» n |
: 7 4 5.6 6 6 6 6 6 5 4 7 21 26 30 32 33 33 32 30 26 21 ships left out of the calculation. The program proceeds in this manner
i . N 8 4 5.6 6 6 6 6 6 5 4 8 19 24 28 30 31 31 30 28 24 19 until all five opponent ships are sunk at which point the program ter-
9 3 4 5 5 5 5 5 5 4 3 9 15 20 24 26 27 27 26 24 20 15 minates. The program was tested against human players to determine
l Miss Mlgfr'g;;t'}iiﬁ:fﬁ Hit l 10 2 3 4 4 4 4 4 4 3 2 10 10 15 19 21 22 22 21 19 15 10 its effectiveness.
Figure 3: The probability density Figure 4: The sum of the prob-
Initiat . . . H
—| Update Board DEE;H? Mode for a single size 3 ship abilities for all ships Conclusions
The program with the implementation of probability density functions
No A B C D E F G H I | A B C D E F G H I showed a marked reduction in the number of moves required to win a
. 1RIS 19 21 21 22 21 19 IS 1 00 0 0 0 0 0 0 00 game from random guessing. In tests against human players it was capa-
Ealcula_te Probability Hits on Unsunk
e e > ships? ¥ ZEENSED 24320 24pE2E 24 CT ‘S ble of winning. Improvements could be made with the implementation
SIS 29BN e s @2 = of predictive algorithms to more accurately identify opponent ship
l"’ﬂﬁ 4 21 26 30 32 21 33 32 30 26 21 4 0 0 0O O O 7 O O O O placement
_ _ _ 5 21 24 24 21 X 22 26 28 26 22 5 0 0 0 0 012 O O O O
Update Board o> Atlack Highest . _HI X
) l 6 22 27 31 33 22 34 33 31 27 22 66 0 1 3 7 12 12 7 3 1 References
7 21 ZCRSUNER ‘ONEEERESC 26 2l 770 000 O 0 0 00 Berry, N. (2011, December 3). Battleship. Retrieved March 14, 2016, from
Vos 8 19 24 28 30 28 31 30 28 24 19 g 0 0 0 0 O 7 O O 0 O http://www.datagenetics.com/blog/december32011/
R 9 15 20 24 26 26 27 26 24 20 15 9 0 0 0O O O 3 0O 0 o0 O Bridon, J. G., Correll, Z. A., Dubler, C. R., & Gotsch, Z. K. An Artificially Intelligent Battleship Player Uti-
10020 15 19 21 22 22 21 19 1510 n B=:|m @ . . . lizing Adaptive Firing and Placement Strategies (Doctoral dissertation, Pennsylvania State Universi-

Figure 1: Flow Chart explaining the basic
logic of the program

Figure 5: A miss at E5 with
Hunt Mode Probability

Figure 6: A hit at F6 with Destroy
Mode Probability

ty). PA: Pennsylvania State University.

