
Common Sorting Algorithms
Michael Hinton, Cleveland State University

Jacob Katzenmeyer, Cleveland State University

Introduction

Methods

1.

2.

Acknowledgments: Thanks to Choose Ohio First and Cleveland

State University for the opportunity to conduct this research.

Results 3.

• Three common (and easy to

implement) sorting algorithms are:

Quick Sort, Bubble Sort, and Selection

Sort.

• Average time complexities:

o Quick Sort: O(n log n)

o Bubble Sort: O(n2)

o Selection Sort: O(n2)

• Big-O notation: Upper bound growth

rate of a function.

• Quick Sort: Divide-and-conquer;

recursively sort left and right sublists.

• Bubble Sort: Compares adjacent

values and swaps them if necessary.

• Selection Sort: Divides list into two

sublists: sorted and unsorted.

Smallest value of the unsorted sublist

is added to the end of the sorted

sublist.

• Each algorithm sorts identical,

randomly created arrays.

• The size of the array to be sorted is

increased exponentially.

o Sizes tested: 10; 100; 1,000

• Each size of array is tested 10,000

times and the quickest algorithm is

recorded.

• The average time is also recorded.

• Run on a Dell Inspiron 15R

10 Item Array
Average times:

o Quick Sort: 1.591 ms

 Quickest 954 times

o Bubble Sort: 1.608 ms

 Quickest 905 times

o Selection Sort: 1.260 ms

 Quickest 6653 times

100 Item Array
Average times:

o Quick Sort: 17.946 ms

 Quickest 9973 times

o Bubble Sort: 75.054 ms

 Quickest 1 time

o Selection Sort: 37.081 ms

 Quickest 26 times

1,000 Item Array
Average times:

o Quick Sort: 230.256 ms

 Quickest 9997 times

o Bubble Sort: 4711.951 ms

 Quickest 0 times

o Selection Sort: 1879.145 ms

 Quickest 3 times

• Quick Sort was the fastest algorithm

with larger data sizes.

• However, it was not the quickest

algorithm at sorting a small data

size (10).

• As expected (from their accepted

time complexities), all algorithms are

more than 10 times slower as the

data size is increased 10 times.

Conclusion 4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Quick Sort Bubble Sort Selection Sort
A

v
e
ra

g
e
 T

im
e
 (

in
 m

ic
ro

s
e
c
o

n
d

s
)

Array Size: 10

0

10

20

30

40

50

60

70

80

Quick Sort Bubble Sort Selection Sort

A
v
e
ra

g
e
 T

im
e
 (

in
 m

ic
ro

s
e
c
o

n
d

s
)

Array Size: 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Quick Sort Bubble Sort Selection Sort

A
v
e
ra

g
e
 T

im
e
 (

in
 m

ic
ro

s
e
c
o

n
d

s
)

Array Size: 1,000

