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The Abstract Picture
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Symmetry of the Space

Note: We can always let (0,0,...,0) be the first codeword because
the space is symmetric.

Proof. Let ¢’ be some codeword in V and f:V — V be defined as

3 c;, ¢'1=0 C, C'n=0)
fle) = ({ c,+1, ;=1 ,...,{ c,+1, ¢, =17

It is clear that f(f(c)) = c forany ¢ € V. Thus, f is its own
inverse function. A map from one discrete space to another
discrete space always maps open sets to open sets. Therefore f is
a homeomorphism.

* The image shows all of the words in a

* The pattern is that of
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How Many Words Are In a Ball?
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Words in an Annulus Have Even Distances

Theorem: Let V be a vector space over Z,. Forany w, € V, the set 4; =
{y:H(wy,v) = j,Vv € V}does not contain any two words an odd distance
apart.

Proof. Starting from w, words that are a distance of one from w,, denoted
A4, each have one componentthat is different from wy. Each of those words
in A; has two componentsdifferent from the other wordsin A;.

Assume that the words in A; all have an even distance from the other words
in A;. Let us consider the set 4;, 1, and let a be an element of 4;,; and let a’
be the elementin A; such that one component of a’ is transposed to obtain
a. By symmetry, we only need to consider the distance between a and the
elements of {4;,; — a}, which we shall denote as B.

Consider the distance between a and some element b € B suchthat b’ € A]-

and one component of b’ is transposed to obtain b. If the component of a’
that is transposed is the same componentof b’ that is transposed, then
H(a,b) = H(a',b"). Otherwise, H(a,b) = H(a',b") + 2.
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Maximum Detectable Code Words

* Pick a wy to be the first code word.
* No words in the annulus A; can be a code word.

- We showed that all words in A, are at least a distance of two
from each other. Chose all of them as code words.

* Every word in A5 is a distance of one from some code word in
A,, so there are no code words here.

* Keep choosing every word in every other annulus.
* This gives 2™~ 1 detectable code words.

* But can we fit even more code words into the space?
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Every hypercube is Hamiltonian.

Thus there exists a Hamiltonian path. A1
n @]

_ 2", .
Therefore, 2"~ 1 = — s the maximum

number of words that fit in the space.
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Maximum Correctable Words

Lower bound: Assuming that the ball of radius 2 centered
at any codeword is disjoint for any other similar ball, then the

lower bound is:
2n+1
[nz +n+ 1] |

Upper bound: Since there is a path connecting all words in
the dictionary in a single line, at most every third word can be a

codeword:

2n
3

Conclusions

* The number of single-error correctable codewords in the spacen = 4

is2.Forn =5, itis4, and forn = 6, we have 8. Therefore, our
conjecture is that there are 2*~3 codewords in the space.

* Our future research will focus on narrowing the upper and lower

bounds of the maximum correctable code words until they converge.

- Additionally, we are investigating the use of generator and parity

check matrices in order to
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