

Error Correction in Finite Arbitrary Length Binary Messages

Dr. Donald White, Wayne Fincher, Jeremy Bouza, and special thanks to Dr. Aron

The codeword "square" is sent. Can errors be detected? Can errors be corrected?

Dictionary: A vector space V over the field \mathbb{Z}_2 . Word: A vector in V. (i.e., a codeword or an error) Distance: The number of components that are different between two words.

Words in an Annulus Have Even Distances

Theorem: Let V be a vector space over \mathbb{Z}_2 . For any $w_0 \in V$, the set $A_j = \{y: H(w_0, v) = j, \forall v \in V\}$ does not contain any two words an odd distance apart.

Proof. Starting from w_0 words that are a distance of one from w_0 , denoted A_1 , each have one component that is different from w_0 . Each of those words in A_1 has two components different from the other words in A_1 .

Assume that the words in A_j all have an even distance from the other words in A_j . Let us consider the set A_{j+1} , and let a be an element of A_{j+1} and let a' be the element in A_j such that one component of a' is transposed to obtain a. By symmetry, we only need to consider the distance between a and the elements of $\{A_{j+1}-a\}$, which we shall denote as a.

Consider the distance between a and some element $b \in B$ such that $b' \in A_j$ and one component of b' is transposed to obtain b. If the component of a' that is transposed is the same component of b' that is transposed, then H(a,b) = H(a',b'). Otherwise, H(a,b) = H(a',b') + 2.

Maximum Correctable Words

Lower bound: Assuming that the ball of radius 2 centered at any codeword is disjoint for any other similar ball, then the lower bound is:

$$\left[\frac{2^{n+1}}{n^2+n+1}\right].$$

Upper bound: Since there is a path connecting all words in the dictionary in a single line, at most every third word can be a codeword:

Symmetry of the Space

Note: We can always let (0,0,...,0) be the first codeword because the space is symmetric.

Proof. Let c' be some codeword in V and $f: V \to V$ be defined as

$$f(c) = \left\{ \begin{cases} c_1, & c'_1 = 0 \\ c_1 + 1, & c'_1 = 1 \end{cases}, \dots, \begin{cases} c_n, & c'_n = 0 \\ c_n + 1, & c'_n = 1 \end{cases} \right\}.$$

It is clear that f(f(c)) = c for any $c \in V$. Thus, f is its own inverse function. A map from one discrete space to another discrete space always maps open sets to open sets. Therefore f is a homeomorphism.

Maximum Detectable Code Words

- Pick a w_0 to be the first code word.
- No words in the annulus A_1 can be a code word.
- We showed that all words in A_2 are at least a distance of two from each other. Chose all of them as code words.
- Every word in A_3 is a distance of one from some code word in A_2 , so there are no code words here.
- Keep choosing every word in every other annulus.
- This gives 2^{n-1} detectable code words.
- But can we fit even more code words into the space?

Conclusions

- The number of single-error correctable codewords in the space n=4 is 2. For n=5, it is 4, and for n=6, we have 8. Therefore, our conjecture is that there are 2^{n-3} codewords in the space.
- Our future research will focus on narrowing the upper and lower bounds of the maximum correctable code words until they converge.
- Additionally, we are investigating the use of generator and parity check matrices in order to

Acknowledgements

- We thank Dr. Aron and Dr. White for their guidance.
- Colin Adams, and Robert Franzosa. *Introduction to Topology: Pure and Applied*. Upper Saddle River, NJ: Pearson Prentice Hall, 2008. 150-152.
- Sarah Adams, Introduction to Algebraic Coding Theory. http://www.math.cornell.edu/~web3360/eccbook2007.pdf, 2008.