KENT STATE

Youngstown

STATE "UNIVERSITY

Sudoku Solver Utilizing Logical Solving
Techniques and Recursive Backtracking

Authors: Jonathan Boyd, Department of Physics, Kent State University, Kent, OH 44242
Emily Hoopes, Department of Mathematics, Youngstown State University, Youngstown, OH 44504

Choose QhioFirst

Mentors: Dorothy Klein, Department of Mathematics, Kent State University, Kent, OH 44242

Introduction

Sudoku is a puzzle games that is usually played on a 9x9 grid of boxes.
The objective is to fill in the missing numbers following a simple rule:
the numbers 1-9 may only appear once in each row, column, and 3x3
box of the grid. Some puzzles can be solved easily using a process of
elimination in each set, however, some require complex strategies that
utilize relations between cells. Our solver program applies both simple
and complex methods to complete any puzzle.

Research Statement

Create a Sudoku solver that is capable of solving any 9x9 puzzle using
logical and computational techniques.

Methods

The puzzle begins as a 9x9 array of a custom class called cell. The cell
class contains an integer value for the single as well as an array of Bool-
ean values for possibilities. A function reads a txt file and begins filling
in the known single values for a particular puzzle. After filling in these
values a second function scans the puzzle for the inputted single values
and begins changing the Boolean values in each row, column, and box
that contains a single value. Following this the puzzle is passed to the
solving portion of the code.

int found = @, found2 = -1, found3 = -1, foundh = -1, foundX = -1, founds = -1;
//the actual looy
Elclass candidates{
public:

candidates();
candidates(int);
void initalize(int);
void candidatesTrue();
baal check();
baol check2(};
int read();

nakedsingle(puzzle, found); //finds the cells that have only one possible value
if (found == 0){
onlyPossible(puzzle, found); //finds the only cell that can have a certain
if (found == B){
TinkedDouble (puzzle, found);
if (found = 0 22 found != found2)
Found2 = Found;
else if (found == 0 || found == found2){
LinkedTriple(puzzle, found);
if (found != 0 88 found != found3)
Found3 = Found;
else if (found == 0 || found ==
hlinkedTriple(puzzle, Foun
if (found != 0 88 found != foundh)

found3) {

veid print() const; Foundh = found;

void changetoFalse(int); else if (fo || found == foundh) {

. soving(aund);
bool cand{int n); if (fo @ a8 found != foundx)
vector <int> posVector(); foundX = found;
. 6 || Found == foundx){
private: e, found);

| bool possible[puzzle Sizel; 2 found i= founds)

Founds = found;
1 else if (found == @ || found == founds){
break:

Class Candidates Structure ;)
Found - 0
printpuzzle(puzzle);
} while (!Solved(puzzle));

intn=o;

Program Structure

The first strategy utilized is naked single. The pro- DIEDIEE
gram searches the array for a cell with only one =
possibility in the Boolean values. It then takes B i1 I
this number and assigns it to the integer value 4.,

and updates the row, column, and 3x3 box with

the updated information for that assigned value. ~ Visual Representation

of a Naked Single

If the program finds a naked single it prints the updated puzzle and be-
gins the solving function cycle again. If no naked singles are found It
moves on to hidden singles. Hidden singles occur when there is only

one of a given number as a possibility in any row, col-

umn, or box. The cell containing that possibility must ol
have that value as its single value for the set to haveall | 3 8
the numbers 1-9. The program then assigns it and up- Bl .

dates the puzzle like before and begins the loop again.
Visual Representation
of a Hidden Single

The next function is linked doubles. The doubles can be naked or hid-
den. If they are naked, then the rest of the cells in the group have
those candidate values changed to false. If two values occur exactly
twice in a group, then the cells are compared. If the cells share the
same two possibilities, then those candidate values are set to false for
the rest of the cells in the group.

Visual Representation of a Naked
Double Pair

The program moves on to finding triples if no doubles are found. Tri-
ples, like doubles, relies on looking at the candidate values for cells. Be-
tween three cells, there are three possible values. Not all cells need to
contain all three possible values. The program works by scanning every
row, column and box. If a value occurs two or three times, that value is

s stored in a vector. Once it finds three values that
=3 Jl-° have returned true two or three times, it then com-
P07 2 pares to see if they all occur within the same three
s I cells. Then it changes those values to false in the rest
of the group.

Visual Representation
of Triple Set

The next to last technique is X-wing. In X-wing two rows (or columns)
have the same two possibilities in the

same two columns (or rows). Thenall B 1| °| "1 " |15 6|9
other candidates for this valuecanbe f 4 (¢ |2 @; 5|61 @33 8
eliminated from the columns (or EEERNE Al 3
rows). The code works by checking S lols 4\\2(/8 21 g
one row and seeing if a possible value 75 76 < 72\3 I
is true for two cells. Then, it checks all ’2 s = : ’; ’69\ 5 ’4
of the rows after it to see if any other 5 R
rows have only two possible cells for 20 43 2 53 zoallza |z o 13 6
the value. If these statements are | ° Lo [SBel6t]%hed?)
true, then it changes that possibility 6121 [Faloenl3e |o ofvmal 5

to false for every cell in that column. Visual Representation of X-wing

Dr. Thomas Wakefield, Department of Mathematics, Youngstown State University, Youngstown, OH 44504

The final technique is a
brute force recursive
backtracking function For
that is capable of solv-

ing any puzzle by itself.

It begins by scanning

the puzzle starting

with the top left cor-

ner. It checks to see if 12 recusmebatktracking(pussies,
the cell is assigned a e
single. If not, it makes e
a copy of the puzzle

makes a guess using
the truth values of the
candidates for that
cell, and passes the
new puzzle to another
iteration of the function. When it gets a
contradiction, it "backtracks" to the previ-

ous cell and tries another guess. This process continues until the correct
solution path is found.

row looping

/col looping

checks if the single is
e_size; +rnum){ //candidate

row] [col].cand(num)){//checks if the candid

initializeru
copyPuzzle , puzzle2);//coppies puzzle 1 to
puzzle2[row][col].assignsingle(num); //assigns sin
assignRow(puzzle2, row, num); //these 3 change the
assigncol (puzzle2, col, num);

assignBox(puzzle2, row, col, num);

/works wel
n))//if th

}

}
else if (Solved(p
printPuzzle

return true;

return false;//loop done, no possible

Recursive Backtracking Structure

Results

The solver is a success on many puzzles of varying difficulty, however
gets stuck on complex puzzles. These puzzles are very sparse with given
values and require the recursive backtracking function. This function
works for any puzzle, however, given the number of possible branches
in a Sudoku grid, it takes longer to run than desired, multiple hours or
days.

Conclusions

Additional solving techniques applied before recursive backtracking
would cut down on the number of paths to be checked and therefore
cut back on the required time.

Future Work

-Develop additional functions from other techniques (Swordfish).
-Expand it to work with any size puzzle (i.e. 16x16).

-Create a graphical user interface.

-Develop it to help people solve puzzles on their own with hints.

References
Johnson, A. Solving Sudoku. Retrieved February 17, 2015, from http://angusj.com/sudoku/hints.php
Main Page. (n.d.). Retrieved February 17, 2015, from http://www.sudokuwiki.org/

